17 research outputs found

    Quantum Next Generation Reservoir Computing: An Efficient Quantum Algorithm for Forecasting Quantum Dynamics

    Full text link
    Next Generation Reservoir Computing (NG-RC) is a modern class of model-free machine learning that enables an accurate forecasting of time series data generated by dynamical systems. We demonstrate that NG-RC can accurately predict full many-body quantum dynamics in both integrable and chaotic systems. This is in contrast to the conventional application of reservoir computing that concentrates on the prediction of the dynamics of observables. In addition, we apply a technique which we refer to as skipping ahead to predict far future states accurately without the need to extract information about the intermediate states. However, adopting a classical NG-RC for many-body quantum dynamics prediction is computationally prohibitive due to the large Hilbert space of sample input data. In this work, we propose an end-to-end quantum algorithm for many-body quantum dynamics forecasting with a quantum computational speedup via the block-encoding technique. This proposal presents an efficient model-free quantum scheme to forecast quantum dynamics coherently, bypassing inductive biases incurred in a model-based approach.Comment: 15 pages, 5 figures. v2: additional forecasting results for a chaotic quantum syste

    StrainNet: Predicting crystal structure elastic properties using SE(3)-equivariant graph neural networks

    Full text link
    Accurately predicting the elastic properties of crystalline solids is vital for computational materials science. However, traditional atomistic scale ab initio approaches are computationally intensive, especially for studying complex materials with a large number of atoms in a unit cell. We introduce a novel data-driven approach to efficiently predict the elastic properties of crystal structures using SE(3)-equivariant graph neural networks (GNNs). This approach yields important scalar elastic moduli with the accuracy comparable to recent data-driven studies. Importantly, our symmetry-aware GNNs model also enables the prediction of the strain energy density (SED) and the associated elastic constants, the fundamental tensorial quantities that are significantly influenced by a material's crystallographic group. The model consistently distinguishes independent elements of SED tensors, in accordance with the symmetry of the crystal structures. Finally, our deep learning model possesses meaningful latent features, offering an interpretable prediction of the elastic properties.Comment: 25 pages, 15 figure

    Biologically Plausible Sequence Learning with Spiking Neural Networks

    Full text link
    Motivated by the celebrated discrete-time model of nervous activity outlined by McCulloch and Pitts in 1943, we propose a novel continuous-time model, the McCulloch-Pitts network (MPN), for sequence learning in spiking neural networks. Our model has a local learning rule, such that the synaptic weight updates depend only on the information directly accessible by the synapse. By exploiting asymmetry in the connections between binary neurons, we show that MPN can be trained to robustly memorize multiple spatiotemporal patterns of binary vectors, generalizing the ability of the symmetric Hopfield network to memorize static spatial patterns. In addition, we demonstrate that the model can efficiently learn sequences of binary pictures as well as generative models for experimental neural spike-train data. Our learning rule is consistent with spike-timing-dependent plasticity (STDP), thus providing a theoretical ground for the systematic design of biologically inspired networks with large and robust long-range sequence storage capacity.Comment: Accepted for publication in the Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI-20

    Family of chaotic maps from game theory

    Get PDF
    From a two-agent, two-strategy congestion game where both agents apply the multiplicative weights update algorithm, we obtain a two-parameter family of maps of the unit square to itself. Interesting dynamics arise on the invariant diagonal, on which a two-parameter family of bimodal interval maps exhibits periodic orbits and chaos. While the fixed point b corresponding to a Nash equilibrium of such map f is usually repelling, it is globally Cesàro attracting on the diagonal, that is, limn→∞1n∑n−1k=0fk(x)=b for every x∈(0,1). This solves a known open question whether there exists a ‘natural’ nontrivial smooth map other than x↦axe−x with centres of mass of all periodic orbits coinciding. We also study the dependence of the dynamics on the two parameters
    corecore